3.114 \(\int \frac{A+B x}{x \sqrt{b x+c x^2}} \, dx\)

Optimal. Leaf size=52 \[ \frac{2 B \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{\sqrt{c}}-\frac{2 A \sqrt{b x+c x^2}}{b x} \]

[Out]

(-2*A*Sqrt[b*x + c*x^2])/(b*x) + (2*B*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])/Sqrt[c]

________________________________________________________________________________________

Rubi [A]  time = 0.0348563, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {792, 620, 206} \[ \frac{2 B \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{\sqrt{c}}-\frac{2 A \sqrt{b x+c x^2}}{b x} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x)/(x*Sqrt[b*x + c*x^2]),x]

[Out]

(-2*A*Sqrt[b*x + c*x^2])/(b*x) + (2*B*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])/Sqrt[c]

Rule 792

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d*g - e*f)*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/((2*c*d - b*e)*(m + p + 1)), x] + Dist[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((L
tQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B x}{x \sqrt{b x+c x^2}} \, dx &=-\frac{2 A \sqrt{b x+c x^2}}{b x}+B \int \frac{1}{\sqrt{b x+c x^2}} \, dx\\ &=-\frac{2 A \sqrt{b x+c x^2}}{b x}+(2 B) \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{b x+c x^2}}\right )\\ &=-\frac{2 A \sqrt{b x+c x^2}}{b x}+\frac{2 B \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{\sqrt{c}}\\ \end{align*}

Mathematica [A]  time = 0.155909, size = 69, normalized size = 1.33 \[ \frac{2 \sqrt{x (b+c x)} \left (\frac{\sqrt{b} B \sqrt{x} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{b}}\right )}{\sqrt{c} \sqrt{\frac{c x}{b}+1}}-A\right )}{b x} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)/(x*Sqrt[b*x + c*x^2]),x]

[Out]

(2*Sqrt[x*(b + c*x)]*(-A + (Sqrt[b]*B*Sqrt[x]*ArcSinh[(Sqrt[c]*Sqrt[x])/Sqrt[b]])/(Sqrt[c]*Sqrt[1 + (c*x)/b]))
)/(b*x)

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 51, normalized size = 1. \begin{align*}{B\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx} \right ){\frac{1}{\sqrt{c}}}}-2\,{\frac{A\sqrt{c{x}^{2}+bx}}{bx}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)/x/(c*x^2+b*x)^(1/2),x)

[Out]

B*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x)^(1/2))/c^(1/2)-2*A*(c*x^2+b*x)^(1/2)/b/x

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.94834, size = 262, normalized size = 5.04 \begin{align*} \left [\frac{B b \sqrt{c} x \log \left (2 \, c x + b + 2 \, \sqrt{c x^{2} + b x} \sqrt{c}\right ) - 2 \, \sqrt{c x^{2} + b x} A c}{b c x}, -\frac{2 \,{\left (B b \sqrt{-c} x \arctan \left (\frac{\sqrt{c x^{2} + b x} \sqrt{-c}}{c x}\right ) + \sqrt{c x^{2} + b x} A c\right )}}{b c x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

[(B*b*sqrt(c)*x*log(2*c*x + b + 2*sqrt(c*x^2 + b*x)*sqrt(c)) - 2*sqrt(c*x^2 + b*x)*A*c)/(b*c*x), -2*(B*b*sqrt(
-c)*x*arctan(sqrt(c*x^2 + b*x)*sqrt(-c)/(c*x)) + sqrt(c*x^2 + b*x)*A*c)/(b*c*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B x}{x \sqrt{x \left (b + c x\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x/(c*x**2+b*x)**(1/2),x)

[Out]

Integral((A + B*x)/(x*sqrt(x*(b + c*x))), x)

________________________________________________________________________________________

Giac [A]  time = 1.15437, size = 80, normalized size = 1.54 \begin{align*} -\frac{B \log \left ({\left | 2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x}\right )} \sqrt{c} + b \right |}\right )}{\sqrt{c}} + \frac{2 \, A}{\sqrt{c} x - \sqrt{c x^{2} + b x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

-B*log(abs(2*(sqrt(c)*x - sqrt(c*x^2 + b*x))*sqrt(c) + b))/sqrt(c) + 2*A/(sqrt(c)*x - sqrt(c*x^2 + b*x))